
The Chat Room - Documentation

A text-based adventure game, made with .xml-files

The Pitch

The Chat Room is a dialogue-based text adventure in which the player gets connected

to one NPC after another and is asked several questions. Every question can only be

answered with Yes or No, influencing the NPC's reaction and the dialogue's further

process.

From a designer's perspective, each NPC's dialogue can be scripted with .xml-files,

that are read by the software and automatically put into the game.

For this game's development, I wanted to include an efficient and convenient way to

create, manage and change dialogues.

I came to the conclusion that the best solution for developing those dialogues is using

.xml-files, due to their clear node-based system.

With that, the creation, access and manipulation of data doesn't directly happen by the

player's input, but the game's designer with .xml-files.

BA3 2019/20 – Game Programming – Digital Games 1

Tree Data Structures: The Dialogue System

Due to the design structure of the yes-no reply system, the whole dialogue system for

each character is sorted in a binary tree data structure.

Every question (here: a) links to two possible reactions and their following scenes i.e.

next two possible questions (b or c).

Each character's whole dialogue is written in xml, with its nodes structured like in the

following:

<scenes nextCharacter=”character a" altNextCharacter="character b">
 <question id="a">
 <lines>
 <line>QUESTION text</line>
 </lines>
 <reaction id="Yes" nextScene="b">
 <lines>
 <line>NPCs REACTION text, if yes</line>
 </lines>
 </reaction>
 <reaction id="No" nextScene="c">
 <lines>
 <line>NPCs REACTION text, if no</line>
 </lines>
 </reaction>
 </question>
 [... more <question> nodes]
</scenes>

Each .xml-file is read right before the beginning of every dialogue, immediately stating

the first question. Subsequently, it's a steady for-loop of stating the reaction and then

the next question, if whether the current NPC nor the player disconnects from the chat.

A disconnection by the player happens if he types DISCONNECT into the chat and

breaks out of the chat. An NPC can also trigger this function, if the attribute nextScene

in the called reaction is labeled with DISCONNECT. The latter represents the ending of

the current dialogue.

BA3 2019/20 – Game Programming – Digital Games 2

Example, Amber.xml:

 <question id="1">
 <lines>
 <line>hey, this is Amber</line>
 <line>glad, when I'm gonna be finished with it in a few months</line>
 <line>what about you? Do you also hate high school?</line>
 </lines>
 <reaction id="Yes" nextScene="2">
 <lines>
 <line>wow so we suffer from the same fate</line>
 <line>finally someone who can understand my pain</line>
 </lines>
 </reaction>
 <reaction id="No" nextScene="DISCONNECT">
 <lines>
 <line>one of those who like rules, huh?</line>
 <line>well, I'm gonna be glad when I'm gone from that place</line>
 <line>Goodbye, man</line>
 </lines>
 </reaction>
 </question>

This is the first question of the game's first character, Amber. A disconnection is

triggered, when the player types no in this situation, due to the nextScene-attribute,

triggering the output:

 - hey, this is Amber

 - glad, when I'm gonna be finished with it in a few months

 - what about you? Do you also hate high school?

yes

 - wow so we suffer from the same fate

 - finally someone who can understand my pain

Subsequently, the game continues with the next questions.

With the use of disconnections, the game creates a non-regular and non-complete

binary tree.

BA3 2019/20 – Game Programming – Digital Games 3

Graph Data Structure: Connecting to NPCs

After every disconnection, the game connects to a new character. This character is not

chosen randomly, but set in the root-node in the previous character's file with:

<scenes nextCharacter=”Emily" altNextCharacter="Gregor">
 [..questions]
<scenes>

The designer can set two characters. The default character nextCharacter is triggered,

when the NPC disconnects from the chat.

The alternative character altNextCharacter is triggered, when the player chooses to

disconnect from the chat.

This enables a graph-like structure, representing how to transition (edge) from one

character (vertex) to another:

BA3 2019/20 – Game Programming – Digital Games 4

Linear Data Structures: The End Results

By the end of the game, the player gets to see a list of all the NPCs (character) he

encountered, including the number of all the questions he got asked.

This function is based on a linear data structure, namely the C++ form of a dictionary's

system: the std::map.

After each question, a counter int questionCount is incremented and at the end of the

current character's dialogue, questionCount is added as a value to the map rating, with

the key being the character's name:

rating[character->name] = questionCount;

So each element is adressed in map rating<string character->name, int questioncount>.

With a for-loop, the output is created at the end of the game:

 End of Session

 Summary of today's session:

 Amber: 3 Questions

 Emily: 2 Questions

 Theodore: 1 Questions

Sources:

C++, general:

http://www.cplusplus.com/

C++, std::map:

https://www.techiedelight.com/print-keys-values-map-cpp/

C++, pointers:

https://www.w3schools.com/cpp/cpp_pointers.asp

RapidXml:

http://rapidxml.sourceforge.net/

https://gist.github.com/JSchaenzle/2726944

BA3 2019/20 – Game Programming – Digital Games 5

http://www.cplusplus.com/
https://www.w3schools.com/cpp/cpp_pointers.asp
https://www.techiedelight.com/print-keys-values-map-cpp/
https://gist.github.com/JSchaenzle/2726944
http://rapidxml.sourceforge.net/

