
PnC Engine – A Basic P oint' n ' C lick Engine

by Michael Gebhart – BA3 WT 19/20

1. Description and Manual:

This semester task, the PnC Engine powered by SFML, creates a 2D scene with data read from an

external .xml-file (“game.xml”). My goal was to provide ways of creating scenes in easy and intuitive means,

based on a simplified AssetId System. An .xml-file example:

<?xml version="1.0" encoding="utf-8"?>
<game title="Point and Click Adventure Game" width="1920" height="1080" fps="48" entryScene="1">
 <assets path="/assets">
 <player id="player" src="player_default.png" speed="5" origin="50, 50" position="100, 650"/>
 <sprite id="npc" src="npc1.png" scale="0.5, 1"/>
 <sprite id="background" src="background.jpg" scale="0.7, 0.6" origin="500, 400"/>
 <sprite id="box" src="crate.png" position="800, 950" scale="0.6, 0.6"/>
 <sprite id="sun" src="sun.png" position="40,40" scale="0.3, 0.3"/>
 <audio id="soundtrack" src="music.wav"/>
 <audio id="clickSound" src="sound01.wav" pitch="0.9"/>
 <text id="txt" src="arcadeclassic.ttf" size="40"/>
 </assets>
 <scenes>
 <scene sceneId="1" rightLevelLimit="900" upperLevelLimit="650" music="soundtrack">
 <txt position="450, 100">GAME ON!</txt>
 <sun onClickText="txt" textPosition="40, 300">I am a Sun!</sun>
 <box/>
 <player/>
 <box position="1050, 780" rotation="90"/>
 <npc position="730, 650" scale="-0.6, 0.6" onClickAudio="clickSound" pitch="0.7"

 onClickText="txt">SMALL GUY</npc>
 <npc position="400, 590" onClickAudio="clickSound" pitch="0.4" onClickText="txt"

 textPosition="400, 500">BIG GUY</npc>
 <background onClickAudio="clickSound" volume="20"/>
 </scene>
 </scenes>
</game>

The .xml-file is split into two sections: the Asset Library (blue) and the Scene Hierarchy (green).

In the Asset Library, all the assets are initially located, so that they can be loaded into <scenes> later.

Each asset needs 1.) an unique assetId 2.) a src path for loading external data such as sprites and audio, and

3.) individual default values the assets can later be instantiated with in the scene, without the need of further

descriptions there.

Each asset (/Entity) is to be differentiated in the following types:

• SPRITE: a basic visual entity. It contains the basic properties for each entity: <position>, <scale>,

<origin> and <rotation>. All properties but <rotation> are detailed with a Vector2f value.

◦ PLAYER: a sub-entity of Sprite. It can only be instantiated once and is the controllable

instance. A unique property is <speed> displaying how many pixels per frame the player moves.

• AUDIO: sound and music, with the properties <volume> and <pitch>.

• TEXT: always located “in front” of each sprite. The string content is the value of the node itself and

“src” should lead to the .ttf-font. Its remaining properties are <color> and <size>.

In the Scene Hierarchy, each asset that should be loaded to the scene can be easily introduced with stating

the assetId as the node's name (e.g. <character01/>). The remaining information is taken from the default

data declared in the Asset Library earlier. All the additional information that can be added to each asset node

in the scene will overwrite the default data.

With the exception of <player>, every asset can be instantiated in multiple numbers and each instance can

have different values. It's worth noting that the <scene> maintains its hierarchy, meaning that a sprite that is

in the upper line of the .xml-files is always drawn “on top” of the ones in the lines below.

The scene itself can be modified with additional nodes and properties:

• SCENE: the <music> node represents background music that begins to play right after the scene is

loaded, furthermore, it also contains the properties <left->, <upper->, <right-> and

<lowerLevelLimit> that are px-coordinates and set borders the player can't pass.

• <onClickAudio> and <-Text> are properties that play a certain sound or display a certain text when

the attached sprite is clicked on. The displayed text is displayed at the sprite's position, but can be

adjusted with <textPosition>. It will also disappear after a second click on any position.

2. Technical Realization

The code itself is based around the Editor which serves the purpose of a general manager:

it reads the .xml-file and creates asset constructs based on the default data in the Asset Library. Dependent on

the information of the active <scene>, the Editor then instantiates and loads the assets to draw the scene and

provides the needed data to the single entities, which they will then manage. The following inheritance

diagram shows the most essential parameters to each Entity type:

To take a closer look at the drawing of the scene: all the asset nodes in <scene> are iterated through from

“bottom up” to keep the layering hierarchy. For every node, the node's name is compared to the elements'

assetIds in the default vector<(Entity)> constructs built out of the Asset Library. Each entity contains a bool

instantiated that states whether it was already instantiated in the scene or not, if so, a second entity of the

same type will be drawn with the default information overwritten from the scene's node.

After executing the program, the scene is then drawn (here with the code from above):

3. Personal Reflection

I learned a lot in the run of this project's development, not only with coding in C++, but also with self-

organization in solo projects, especially in terms of time management and efficient ways of working. For me,

it was difficult to draw a line between which functions are needed for the final project and which ones I

shouldn't even consider. I also underestimated the time needed to implement certain functions, resulting in

functions like Scene Management and Animations being cut due to time constraints. Furthermore, it was

really interesting to think of usability for the designers of the .xml-files, even though I easily got lost with

little details when it came down to convenience.

I am convinced that my code can be improved in a lot of ways i.e. naming conventions and general

efficiency, nonetheless, I am really satisfied with what I achieved with this semester task. C++ is a language I

want to keep learning and I really intend to stick to. This project was really helpful to improve my skills in

that very language and I am excited to find out which other projects I am going to tackle with it.

Thank You!

